Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern

نویسندگان

  • Juliane Schröter
  • René P Zahedi
  • Michael Hartmann
  • Birgit Gaßner
  • Alexandra Gazinski
  • Jens Waschke
  • Albert Sickmann
  • Michaela Kuhn
چکیده

Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3',5'-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constitutively "phosphorylated" guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization.

Dephosphorylation of the natriuretic peptide receptor-A (NPR-A) is hypothesized to mediate its desensitization in response to atrial natriuretic peptide (ANP) binding. Recently, we identified six phosphorylation sites within the kinase homology domain of NPR-A and determined that the conversion of these residues to alanine abolished the ability of the receptor to be phosphorylated or to be acti...

متن کامل

Possible identification of novel natriuretic peptide receptor phosphorylation sites by alanine/glutamate mutagenesis

Background Natriuretic peptide receptors A (NPR-A) and B (NPR-B) are transmembrane guanylyl cyclases that regulate blood pressure, heart size and long bone growth. Unlike most cell surface receptors that are desensitized by direct phosphorylation, phosphorylation of natriuretic peptide receptors is essential for activation, and dephosphorylation causes their desensitization. While there are six...

متن کامل

A splice variant of the guanylyl cyclase-A receptor interferes with atrial natriuretic peptide (ANP) signaling

Background Activation of the homodimeric transmembrane guanylyl cyclase-A (GC-A) receptor upon binding of its extracellular ligands, atrial (ANP) and B-type (BNP) natriuretic peptides, leads to cyclic GMP formation in many types of cells. This NP/GC-A pathway has a critical role in the endocrine regulation of arterial blood pressure and volume and in the local counter-regulation of cardiac hype...

متن کامل

Down-regulation does not mediate natriuretic peptide-dependent desensitization of natriuretic peptide receptor (NPR)-A or NPR-B: guanylyl cyclase-linked natriuretic peptide receptors do not internalize.

Natriuretic peptide receptor A (NPR-A/GC-A) and B (NPR-B/GC-B) are members of the transmembrane guanylyl cyclase family that mediate the effects of natriuretic peptides via the second messenger, cGMP. Despite numerous reports of these receptors being down-regulated in response to various pathological conditions, no studies have actually measured desensitization and receptor internalization in t...

متن کامل

A novel pathway of cGMP

Background Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GCA to exert its diverse functions. This involves a cGMPdependent signaling pathway preventing pathological [Ca]i raises in myocytes. In chronic cardiac hypertrophy, howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 277  شماره 

صفحات  -

تاریخ انتشار 2010